Multiple Machines

e Model Multiple Available resources
— people
— time slots
— queues
— networks of computers

e Now concerned with both allocation to a machine and ordering on that
machine.

P|Cmax

NP-complete from partition.

Example
o,
10
8
6
4
2
1

S U W N =S

e What is the makespan on 2 machines?
e 3 machines ?

e 4 machines 7

Approxmiation Algorithms

e Cannot come up with an optimal solution in polynomial time
e Will look at relative error : (', (our algorithm)/C,,..(OPT)
e Challenges:

— Our algorithm’s performance is different on different instances
— We can’t compute C..(OPT)

Approxmiation Algorithms

e Cannot come up with an optimal solution in polynomial time
e Will look at relative error : (', (our algorithm)/C,,..(OPT)
e Challenges:

— Our algorithm’s performance is different on different instances
— We can’t compute C..(OPT)

Solution:

e We will use a worst case measure on performance

e We will use a lower bound on .. (OPT)

Approximation Algorithms

An algorithm A is a p approximation algorithm for a problem, if for all
inputs

CmaX(A)
<p
Conax(OPT)

In addition, A must run in polynomial time.

We can’t compute C,.x(OPT) .

Recipe:
e Instead, we compute a lower bound LB(OPT) , such that

— LB(OPT) is easy to compute
— LB(OPT) < Cpue(OPT) .

e We then show that C,..(A) < pLB(OPT) .
Combining the previous two steps, we have:

Ciax(A) < pLB(OPT) < pChiax(OPT)
which can be rewritten as
CInaX(A)
<p
Cruax(OPT)

Notes:
e Must come up with a good lower bound

e Can replace (., with any objective.

Lower Bounds for P||Ciax

e Average load

e Longest job

Lower Bounds for P||Ciax

e Average load — [xp;/m]
e Longest job — p,. = max;{p;}

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

List Scheduling Algorithm

A Greedy Algorithm

1. Make a list of the jobs (in any order)

2. When a machine becomes available, schedule the next job on the list.

Analysis
e Let ¢/ be the last time at which all machines are busy.
ot <x;p;/m
® Ciax < T+ Pmax < I Pj/M + Prnax -

Put this together with our lower bound:

Omax S t+pmax S Zp//m +pmax S 2LB S 20PT
J

Improved Algorithm

e Schedule length is average load plus last job.
e When last job is small, the schedule is shorter.

e Force last job to be small — LPT (Longest Processing Time).

LPT is a 4/3-approximation for P||Cy.x-.

Proof Outline
e If last job is small (< 1/30PT) then 4/3-approximation

e Otherwise, there are at most 2 jobs per machine and LPT is optimal.

Even better algorithms are possible: . A polynomial-time approximation
scheme (PTAS) is an algorithm that, given fixed ¢ >0, returns at (1 +¢)
-approximation in polynomial time. The running time can have a bad
dependence on ¢, such as n?/9 .

P||Ch.x has a PTAS.

Precedence Constraints

e Poo|prec|Ch. is known as project scheduling.

e P|prec|Ch.c has a 2-approximation.

What are good lower bounds for P|prec|Clax

Precedence Constraints

e Poo|prec|Ch. is known as project scheduling.

e P|prec|Ch.c has a 2-approximation.

What are good lower bounds for P|prec|Clax

e Average load

® leaX

e any path in the precedence graph
e the critical path is the longest path in the precedence graph.

=70

/ﬁ}\ .

~ ()
NG

D=

Unit Processing Times /)@

Plp; = 1, prec|Cax is NP-hard. D))O

O%
Heuristics ‘\B

e Critical Path (CP) rule

— The job at the head of the longest string of jobs in the constraint
graph has the highest priority

_ — 2
— Plp; = 1,tree|Cy.x is solved by CP. @ 1@ >}® ﬁ
e Largest Number of Successors First (LINS) O// o / /1/)7%/&

— The job with the largest total number of successog in the constraint
graph has highest priority.
— For in-trees and chains, LNS is identical to CP

— LNS is also optimal for Pp; = 1,outtree|C, .«

e Generalization to arbitrary processing times is possible

Fixed Number of Processors
® 2|p; = 1,prec|C, is solvable in polynomial time

® P3|p;, = 1,prec|Cy,, is a big open question.

O‘mov(- (\7

Geod

N W JU@J ON C I %an
] f@‘*ﬂ (
4ol U@%ﬂ/g#f ’ @(C@m/

@ @ABQ%Q@
3 /)@

@ —

@\ 3®>

® 2
@\

Preemptions: P|pmtn|Ciax

e McNaughton’s wrap-around rule is optimal. LB €Pj 8]
—
MN=3 Mo

Example Z

z;%; = (0
T SR ALY,

Sl éﬂ% o &Dmbllm

Preemptions: P|pmtn|Chax

e McNaughton’s wrap-around rule is optimal. /5) 2
M~ 3 Cg“mm(?) (0]~ 3!

Example 3

J Dj

A7

B 10

C 1 MBIl E

D 4 M2 @

E 9

M

Preemptions: P|pmtn|Ciax

e McNaughton’s wrap-around rule is optimal.

Example CO/ fQ@{LMg
j i

LP for P|pmtn|Chax

gmogit 0T

Variables: z;; 1is thé& time that job ; runs on machine :. ()., is also
a variable.

Constraints
e Each job runs for p; units of time
e Fach machine runs for at most (.. time.

e (.. is more than any processing time.

min Clax (1)
s.t. (2)
StTii=p; j=1...n (3)

S 1% S Cpax 1=1...m (4)

S % < Cpax J=1...1 (5)

(6)

X, 20 vl)
Note that LP only assigns pieces of jobs to machines. Need to also assign

obs to times. Yt P>
CO(Y\QJSb to ti - Xl@lf? Xigv{? ><8~Dt Zé XZ(V :’9
@/%& Xpps 35 X0z 1 Xypz)3

Machines with speeds — Q|pmtn|Ciax

e Machines M,... M, with speeds vy,....,v,, .
e Assume wlog that v, > vy, > v,

e Assume wlog that p;, > py > p,

e If a job runs for one unit of time on machine M/, , it uses up v; units
of processing.

e If job j runs on machine 1/, , then it takes p;/v; time units to
complete.

Bample el Job A Can

A 20

B 16 V) 2 % U

C 2 \/L_, Q unts it Fne g M)
D 1

Vi=) 20- Y(2)=

What are the lower bounds
I £ Umgs ol o, e Ml

Lower bounds for Q|pmtn|Ciax

e What is the analog of p,.. 7]3] / U{
e What is the analog of average load 7 ~
e Are there others ? E

] DQ (77’17/@]

g /) “»Q‘? § 3
/) Vi 2 72 V) T
L 2 1S/
7N s S S
S g4
<
M) 7)) J .

Lower bounds for Q|pmtn|Ciax

e What is the analog of p... 7 — pi/v
e What is the analog of average load 7 — »p;/ >,

® Are there others 7 — Yes

General Lower Bound

O > max (pl P11+ D2 Zm1 Dj Z?M?j)
max —_

v v oy e e

Prg, PP
R iy SR Y

Ny ;N5

Lower Bound

O > max (pl p1+ P2 >t ey Pj)

9 ct —1 9
v vty S Y S

What is the lower bound for our example?

Can we achieve this lower bound?

p- (20) 16 >
v= (4,2,))

ol L0 20V16 2076037
103l T e

m(@@ S

LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Example 1 |
J D
g % 1Lk A 20 | |
oY/ .

12+ B 16

%)D/I’C

Q)’ ;| D 1

O
Example 2) ij
J D 2.
A 20 3
B 16

C 12 b~ ¢ ot rem (A= -Ye
b1 WM(}g} — Y-)¢

Notes:
e LRPT-FM is optimal in continuous time

e LRPT-FM is near otimal in discrete time, for small time steps.

LRPT-FM

Longest Remaining Processing Time on Fastest Machines

Exgmple 1 OMMG 2 %—U }_@z}é ?/OJ//(%)Q-/T)
A 20 U 172 yrar)
](33 ;6 - Y\) ‘() g y)
D1 2

A 201 2 452" |

n 1L 14)045\{33
C LLI 109) AN
Dy ﬂ«

Notes:

e LRPT-FM is optimal in continuous time

e LRPT-FM is near otimal in discrete time, for small time steps.

Con %m/O([S ULWQ

